Long-term changes in the inorganic nitrogen output in European ICP Integrated Monitoring catchments – an assessment of the role of internal N-related parameters

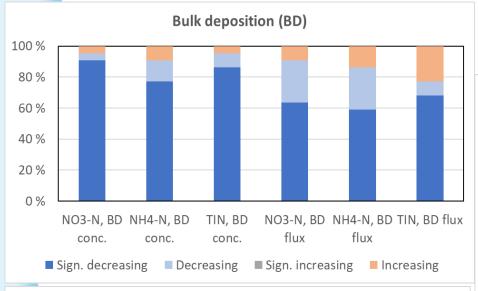
Preliminary results

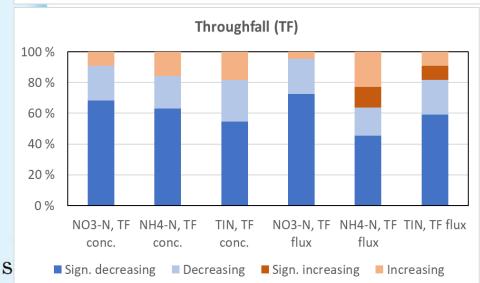
<u>Jussi Vuorenmaa</u>, Sirpa Kleemola, Martin Forsius + representatives of focal points...

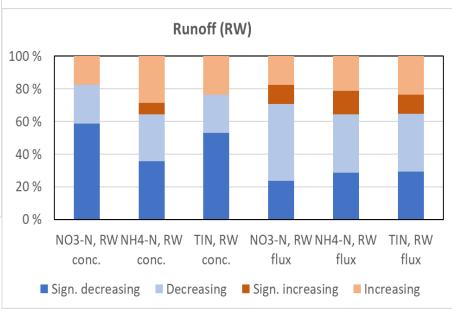
ICP IM Task Force meeting, 13.-14.5.2020

Call for data / data mapping 2019

- Routine monitoring variables do not explain variation/change in TIN output satisfactorily, because not all potential drivers were included in the empirical models
 - Further analysis with specific catchment and soil data is needed: Data mapping on internal catchment N-related parameters at IM sites
- Data collected
 - ☐ Soil chemistry (SC): N tot, TOC, pH
 - Soil water chemistry (SW): NO₃, NH₄, N tot, TOC/DOC, pH
 - Litterfall chemistry (LF): N tot, TOC, litterfall amount (d.w.)
 - ☐ Foliage chemistry (FC): N tot, TOC, sample weight (d.w.)
- Based on available data (2010-2017) in IM database, the following sites with RW measurements (chemistry and/or runoff volume) were included in to the N assessment: AT01, CZ01, CZ02, DE01, EE02, ES02, FI01, FI03, LT01, LT03, NO01, NO02, PL06, PL10, SE04, SE15, SE16 (17 sites from 10 countries).
 - Can these parameters help to explain the variation/trends of TIN in RW at IM sites?




Preliminary analysis of data


- Soil water flux (SW_q) was calculated using chloride massbalance method: SW_q = (Cl bulk + dry deposition / Cl concentration in SW)
- Soil chemistry data from O-horison,
- Soil water data from 30-40 cm depth
- Annual means between 2010 and 2017
- First exploration of data:
 - Update of trends for PC, TF and RW in 1990-2017
 - Correlation analysis
 - Multiple regression
 - Discriminant analysis

Trend assessment for IM sites: general decrease in N deposition in 1990-2017. Is there a similar decline in TIN output in runoff?

Correlation analysis: N in litterfall, foliage, soilwater, and throughfall deposition, and trends in runoff were related to variation of TIN trends in RW

p < 0.05, - negative, + positive; *p< 0.05, ** p < 0.01, *** p < 0.001

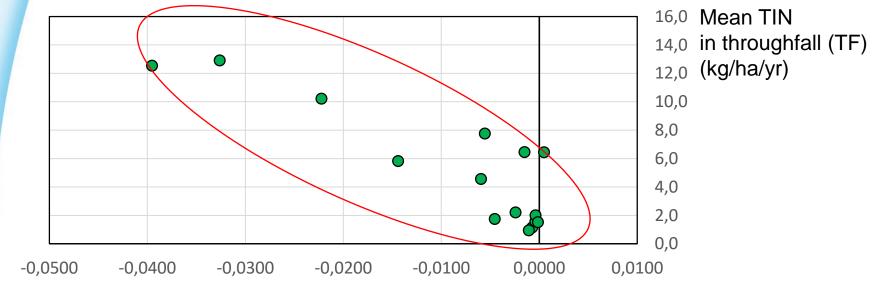
Deposition and Runoff	mean TIN, TF	ΔTIN, BD
ΔTIN conc. RW		+
ΔTIN flux RW		+
mean TIN conc. RW	++	
mean TIN flux RW	+	

ΔRunoff	
++	

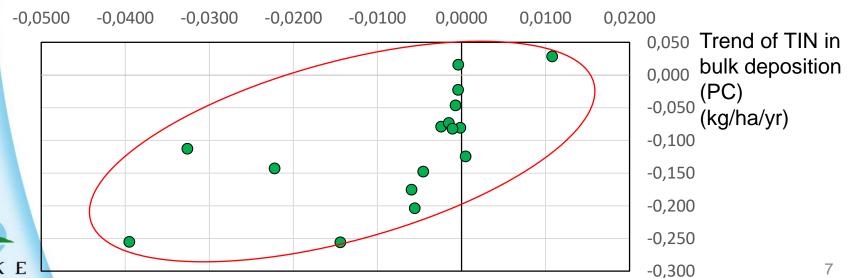
Foliage and litterfall	and litterfall mean N tot in FC mean LF amount		mean N tot in LF	
Δ TIN conc. RW				
Δ TIN flux RW		-		
mean TIN conc. RW	+	+++	++	
mean TIN flux RW	++	+	++	

Soil chemistry	mean TOC in soil OH	mean C/N in soil OH
ΔTIN conc. RW	+	(+, p=0.07)

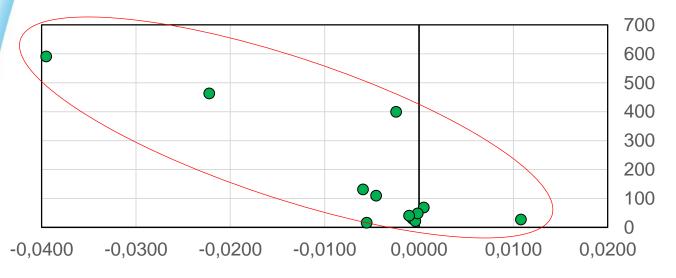
Soil water chemistry	mean TIN conc. in SW	mean N tot conc. in SW		mean TIN flux in SW	mean N tot flux in SW
ΔTIN conc. RW			-		
ΔTIN flux RW					
mean TIN conc. RW			•	•	



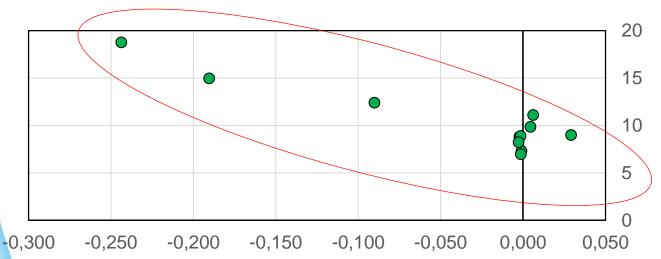
Multiple regression and discriminant analysis also higlight the role of N parameters


- Multiple regression:
 - \circ Δ TIN conc. in RW (mg/L/yr) = mean tot N in FC (mg/g) (R²=0.88)
 - \circ Δ TIN flux in RW (kg/ha/yr) = mean tot N in FC (mg/g) (R²=0.94)
 - Mean TIN conc. in RW (mg/L) = mean tot N in FC (R²=0.97)
 - Mean TIN flux in RW = mean N tot in FC (R²=0.95)
- Discriminant analysis between two groups:
- 1) sites with sign. decreasing trend in TIN conc. and fluxes in RW, and 2) sites with no sign. trends
 - Δ TIN conc. In RW (mg/L/yr) = mean N tot in LF
 - Mean N tot in LF (group 1) > mean N tot in LF (group 2)
 - ΔTIN flux in RW (mg/L/yr) = mean TIN in TF; mean TIN conc. in SW
 - Mean TIN in TF and TIN conc. in SW (group 1) > Mean TIN in TF and TIN conc. in SW (group 2)

Largest declines in TIN at sites with high N in TF and largest decrease of N in PC



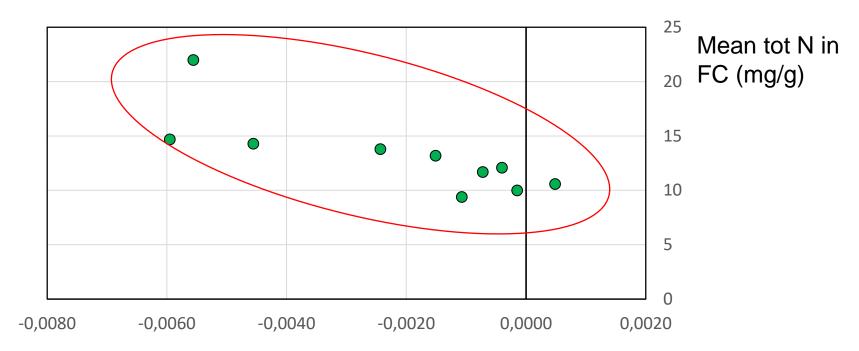
Trend in TIN (concentrations) in RW (mg/L/yr)



LF amount and N amount in LF affect to TIN trends in RW

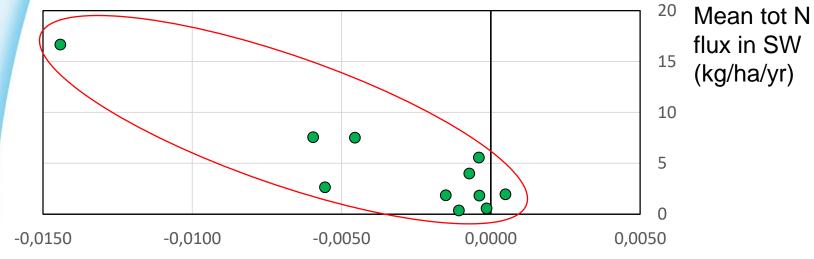
Mean litterfall amount (g/m²)

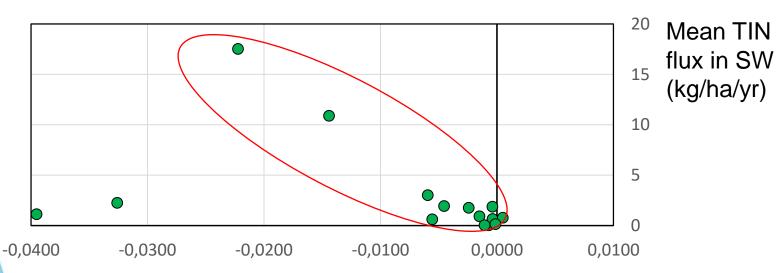
Trend in TIN (concentrations) in RW (mg/L/yr)



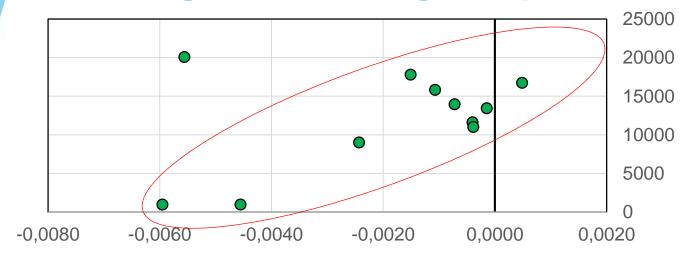
Mean tot N in litterfall (mg/g)

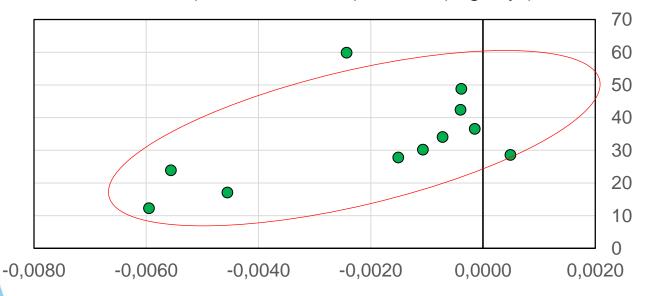
SYKE


Also tot N in FC affects


Trend in TIN (concentrations) in RW (mg/L/yr)

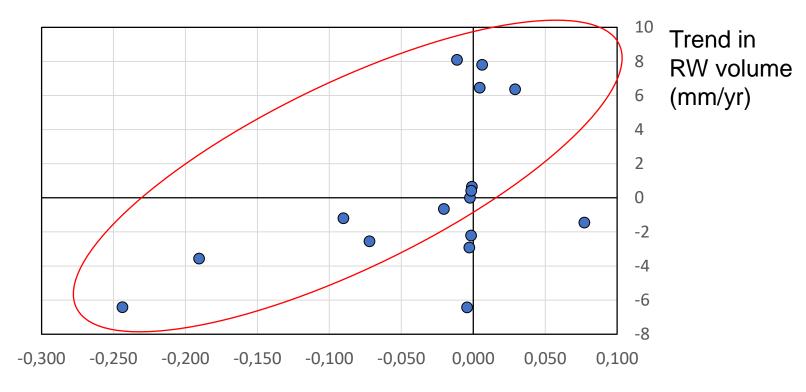
TIN trends in RW are deepening with increasing N in SW


Trend in TIN (concentrations) in RW (mg/L/yr)


SYKE

Trends of TIN in RW are weaker at sites with higher soil N organic pool

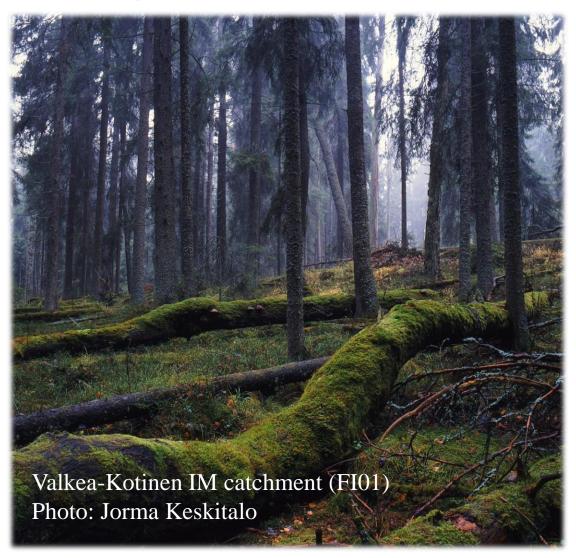
Mean tot N in soil OH (mg/kg)


Trend in TIN (concentrations) in RW (mg/L/yr)

Mean C/N-ratio in soil OH

Variation in RW volume trends, but correlation exists between RW volume and TIN flux trends in RW

Trend in TIN (fluxes) in RW (kg/ha/yr)



First conclusions

- TIN concentrations and fluxes in deposition have generally decreased at IM sites in 1990-2017 (70-90% of the sites)
- NO₃ concentrations in RW have significantly decreased at 60% of the sites. More variation in trends in fluxes. Downward trend of TIN in RW is dominant (70-80 % of the sites)
- N in LF, FC, SW, and TF deposition, and trend in RW volume can explain some variation of TIN trends in RW:
 - Most affected sites with highest N in LF, FC and SW showed the most pronounced TIN decreases in RW
 - A lower C/N-ratio in the soil (a proxy for enrichment of soil with N), the most pronounced TIN decreases in RW
 - In agreement with extensive ICP Waters data
- N is complex, and making this N-puzzle will continue with NFPs
- Additional statistics and parameters probably needed

Thank you

